Rhythmic 3-4 Hz discharge is insufficient to produce cortical BOLD fMRI decreases in generalized seizures
نویسندگان
چکیده
Absence seizures are transient episodes of impaired consciousness accompanied by 3-4 Hz spike-wave discharge on electroencephalography (EEG). Human functional magnetic resonance imaging (fMRI) studies have demonstrated widespread cortical decreases in the blood oxygen-level dependent (BOLD) signal that may play an important role in the pathophysiology of these seizures. Animal models could provide an opportunity to investigate the fundamental mechanisms of these changes, however they have so far failed to consistently replicate the cortical fMRI decreases observed in human patients. This may be due to important differences between human seizures and animal models, including a lack of cortical development in rodents or differences in the frequencies of rodent (7-8 Hz) and human (3-4 Hz) spike-wave discharges. To examine the possible contributions of these differences, we developed a ferret model that exhibits 3-4 Hz spike-wave seizures in the presence of a sulcated cortex. Measurements of BOLD fMRI and simultaneous EEG demonstrated cortical fMRI increases during and following spike-wave seizures in ferrets. However unlike human patients, significant fMRI decreases were not observed. The lack of fMRI decreases was consistent across seizures of different durations, discharge frequencies, and anesthetic regimes, and using fMRI analysis models similar to human patients. In contrast, generalized tonic-clonic seizures under the same conditions elicited sustained postictal fMRI decreases, verifying that the lack of fMRI decreases with spike-wave was not due to technical factors. These findings demonstrate that 3-4 Hz spike-wave discharge in a sulcated animal model does not necessarily produce fMRI decreases, leaving the mechanism for this phenomenon open for further investigation.
منابع مشابه
Seizure Transitions in Primary Generalized Epilepsy
14 Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. 15 Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that 16 rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger 17 absence seizures. Most previous studies have been purely correlational, and it...
متن کاملSpatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy.
Transitions into primary generalized epileptic seizures occur abruptly and synchronously across the brain. Their potential triggers remain unknown. We used optogenetics to causally test the hypothesis that rhythmic population bursting of excitatory neurons in a local neocortical region can rapidly trigger absence seizures. Most previous studies have been purely correlational, and it remains unc...
متن کاملNeurobiology of Disease Dynamic Time Course of Typical Childhood Absence Seizures: EEG, Behavior, and Functional Magnetic Resonance Imaging
Absence seizures are 5–10 s episodes of impaired consciousness accompanied by 3– 4 Hz generalized spike-and-wave discharge on electroencephalography (EEG). The time course of functional magnetic resonance imaging (fMRI) changes in absence seizures in relation to EEG and behavior is not known. We acquired simultaneous EEG–fMRI in 88 typical childhood absence seizures from nine pediatric patients...
متن کاملEpilepsy and phenylketonuria: a case description and EEG-fMRI findings.
Phenylketonuria (PKU) is characterized by phenylalanine accumulation due to phenylalanine hydroxylase deficiency. Up to 50% of PKU patients experience seizures. We evaluated an adult PKU patient who suffered from absences and primarily generalized tonicclonic seizures, associated with generalized spikeand-wave discharges (GSWs) on EEG. An analysis of blood oxygenation level-dependent (BOLD) sig...
متن کاملBOLD and perfusion changes during epileptic generalised spike wave activity
It is unclear whether neurovascular coupling is maintained during epileptic discharges. Knowing this is important to allow appropriate inferences from functional imaging studies of epileptic activity. Recent blood oxygen level-dependent (BOLD) functional MRI (fMRI) studies have demonstrated negative BOLD responses (NBR) in frontal, parietal and posterior cingulate cortices during generalised sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 109 شماره
صفحات -
تاریخ انتشار 2015